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Abstract—This ar t icle presents the most 
thorough study to date of vehicular carrier-
phase differential Global Navigation Satellite 
System (CDGNSS) positioning performance in a 
deep urban setting unaided by complementary 
sensors. Using data captured during approxi-
mately 2 h of driving in and around the dense 
urban center of Austin, Texas, a CDGNSS sys-
tem is demonstrated to achieve 17-cm-accurate 
3D urban positioning (95% probability) with 
a solution availability greater than 87%. The 
results are achieved without the aid of iner-
tial, electro-optical, or odometry sensors. The 
development and evaluation of the unaided, 
GNSS-based precise positioning system is a 

GNSS-BASED GNSS-BASED GNSS-BASED GNSS-BASED GNSS-BASED GNSS-BASED 
POSITIONINGPOSITIONINGPOSITIONING
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F
uture vehicle-to-vehicle (V2V) and vehicle-to-infra-
structure (V2I) connectivity will permit vehicles to 
relay their positions and velocities to each other with 
millisecond latency, enabling tight, coordinated pla-

tooning and efficient intersection management. More am-
bitiously, broadband V2V and V2I enabled by 5G wireless 
networks will permit vehicles to share unprocessed or 
lightly processed sensor data. Ad hoc networks of vehicles 
and infrastructure will then function as a single sensing 
organism. The risk of collisions, especially with pedes-
trians and cyclists—notoriously unpredictable and much 
harder to sense reliably than vehicles—will be significant-
ly reduced as vehicles and infrastructure contribute sensor 
data from multiple vantage points to build a blind spot-free 
model of their surroundings.

Such collaborative sensing and traffic coordination 
requires vehicles to know and share their own position. 
How accurately? The proposed Dedicated Short Range 
Communications basic safety message, a first step in V2V 
coordination, does not yet define a position accuracy re-
quirement, effectively accepting whatever accuracy a 
standard Global Navigation Satellite System (GNSS) re-
ceiver provides [1]. But automated intersection manage-
ment [2], tight-formation platooning, and the unified 
processing of sensor data—all involving vehicles of dif-
ferent makes that may not share a common map—will be 
greatly facilitated by globally referenced positioning with 
sub-30-cm accuracy.

Poor weather also motivates high-accuracy absolute 
positioning. Every automated vehicle initiative of which 
the authors are aware depends crucially on lidar or cam-
eras for fine-grained positioning within their local envi-
ronment. But, these sensing modalities perform poorly in 
low-visibility conditions such as a snowy whiteout, dense 
fog, or heavy rain. Moreover, high-definition 3D maps cre-

ated with lidar and camera data, maps that have proven 
crucial to recent progress in reliable vehicle automation, 
can be rendered dangerously obsolete by a single snow-
storm, leaving vehicles relying on such maps for posi-
tioning no option but to fall back on GNSS and radar to 
navigate a snow-covered roadway in low-visibility con-
ditions. When, as is often the case on rural roads, such 
snowy surroundings offer few radar-reflective landmarks, 
radar also becomes useless. GNSS receivers operate well 
in all weather conditions, but only a highly accurate GNSS 
solution, e.g., one whose absolute errors remain under 
30 cm 95% of the time, could prevent a vehicle’s drifting 
onto a snow-covered road’s soft shoulder. Code- and Dop-
pler-based GNSS solutions can be asymptotically accurate 
(averaged over many sessions) to better than 50 cm, which 
may be adequate for digital mapping [3], but they will find 
it challenging to meet a 30-cm 95% standalone require-
ment, even with modernized GNSS offering wideband sig-
nals at multiple frequencies.

Carrier-phase-based GNSS positioning—also referred to 
as precise GNSS positioning even though it actually offers ab-
solute accuracy, not just precision (repeatability)—can meet 
the most demanding accuracy requirements envisioned for 
automated and connected vehicles but has historically been 
either too expensive or too fragile, except in open areas with 
a clear view of the overhead satellites, for widespread adop-
tion. Coupling a carrier-phase differential GNSS (CDGNSS) 
receiver with a tactical-grade inertial sensor, as in [4]–[7], 
enables robust high-accuracy positioning even during the 
extended signal outages common in dense urban areas. But 
GNSS-inertial systems with tactical-grade inertial measure-
ment units (IMUs) cost tens of thousands of U.S. dollars and 
have proven stubbornly resistant to commoditization. Cou-
pling a GNSS receiver with automotive- or industrial-grade 
IMUs is much more economical and significantly improves 
performance, as shown in [8]. But such coupling allows only 
approximately 5 s of complete GNSS signal blockage before 
the IMU no longer offers a useful constraint for so-called in-
teger-ambiguity resolution [9], which underpins the fastest, 
most accurate, and most robust CDGNSS techniques, name-
ly, single-baseline real-time kinematic (RTK), network RTK, 
and Precise Point Positioning RTK (PPP-RTK) [10], [11].

Previous research has suggested an inexpensive tech-
nique for robustifying RTK positioning: tightly coupling 
carrier-phase-based GNSS positioning with inertial sens-
ing and vision [12], [13]. Such coupling takes advantage of 
the remarkable progress in high-resolution, low-cost cam-
eras within the intensely competitive smartphone market. 
We are currently engaged in developing a high-integrity 
RTK-vision system for high-accuracy vehicular positioning 
in rural and urban environments. Further coupling with 
radar will make the system robust to low-visibility condi-
tions. As a step toward this goal, it is of interest to evalu-
ate the performance of standalone RTK techniques—those 

key milestone toward the overall goal of combining 
precise GNSS, vision, radar, and inertial sensing for 
all-weather, high-integrity, high-absolute-accura-
cy positioning for automated and connected ve-
hicles. The system described and evaluated herein 
is composed of a densely spaced reference network, 
a software-defined GNSS receiver, and a real-time 
kinematic (RTK) positioning engine. A perfor-
mance-sensitivity analysis reveals that navigation 
data wipeoff for fully modulated GNSS signals and 
a dense reference network are key to high-perfor-
mance urban RTK positioning. A comparison with 
existing unaided systems for urban GNSS processing 
indicates that the proposed system has significantly 
greater availability or accuracy.
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unaided by IMUs, odometry, or vi-
sion—in urban environments. This 
type of study will reveal why and 
when aiding is necessary and how 
an RTK positioning system might 
behave if aiding were somehow 
impaired or unavailable, whether 
due to sensor faults or, in the case 
of exclusive visual aiding, poor vis-
ibility conditions.

Little prior work has explored 
unaided vehicular RTK perfor-
mance in urban environments, no 
doubt because performance re-
sults have historically been dismal. 
Short-baseline RTK experiments between two vehicles in 
[14] revealed that multifrequency (L1-L2) GPS and GLONASS  
RTK yielded poor results in residential and urban environ-
ments. Only along a mountain highway with a relatively 
clear view of the sky was availability greater than 90% 
and accuracy better than 30 cm. RTK positioning in down-
town Calgary was disastrous, with less than 60% solution 
availability and root-mean-square errors exceeding 9 m.

More recently, Li et al. [8] have shown that, with the bene-
fit of greater signal availability, unaided, professional-grade 
dual-frequency GPS + BDS + GLONASS RTK can achieve cor-
rect integer- fixing rates of 76.7% on a 1-h drive along an ur-
ban route in Wuhan, China, where BDS refers to the BeiDou 
Navigation Satellite System. But Li et al. do not provide data 
on the incorrect fixing rate, nor a full error distribution, so 
the significance of their results is difficult to assess.

Recent urban RTK testing by Jackson et al. [15] indicates 
that no low-to-mid-range consumer RTK solution offers 
greater than 35% fixed (integer-resolved) solution and avail-
ability in urban areas, despite a dense reference network and 
dual-frequency capability. A key failing of existing receivers 
appears to be their slow recovery after passing under bridges 
or overpasses.

This article describes and evaluates an unaided RTK 
positioning system that has been designed for vehicular 
operation in both rural and urban environments. Prelimi-
nary performance results were published in a conference 
version of this article [16]; however, this article improves 
upon the conference version in four ways: 1) the test route 
is both more challenging and more comprehensive, 2) a 
proper independent ground-truth trajectory is used as the 
basis of error evaluation, 3) data-modulation wipeoff for 
improved carrier-tracking robustness is applied not only 
on GPS L1 C/A signals, as previously, but now also on satel-
lite-based augmentation system (SBAS) L1 signals, and 4) 
the performance benefit of vehicle GNSS antenna calibra-
tion is assessed.

This article’s primary contributions are 1) a demon-
stration of the performance that can be achieved with a 

low-cost, software-defined unaided RTK GNSS platform in 
a dense urban environment and 2) an evaluation of the rel-
ative importance of various factors (e.g., data bit wipeoff, 
age of reference data, rover antenna calibration, and refer-
ence network density) to the overall system performance.

To stimulate further innovation in urban precise po-
sitioning, all of the data from this article’s urban driv-
ing campaign have been posted at http://radionavlab 
.ae.utexas.edu under “Public Datasets: ATX Urban Position-
ing Challenge Dataset” including wideband (10-MHz) in-
termediate-frequency (IF) samples from both the reference 
and rover antennas, RINEX-formatted rover and reference 
observables, and the ground-truth trajectory. 

Challenges of Mobile Precise Positioning  
in Urban Environments
The mobile urban satellite-to-user channel is distinguished 
by rapid channel evolution. As the vehicle travels along 
streets closely lined with tall buildings, only glimpses of 
power are available from signals arriving from directions 
roughly perpendicular to the roadway. A GNSS receiver de-
signed to provide phase-locked carrier measurements for 
RTK positioning in such environments must simultaneous-
ly prevent frequency unlock during the deep fades caused 
by building occlusions and exploit momentary signal avail-
ability by immediately acquiring full-cycle phase lock and 
indicating this to downstream processing.

Tracking in the mobile urban channel is unlike indoor 
or weak-signal tracking, such as that which is explored in 
[17] and [18], in that the urban fading environment is sub-
stantially binary: either the line-of-sight signal is present at 
a fairly healthy carrier-to-noise ratio, / ,C N0  or it is hope-
lessly attenuated after passing through entire buildings 
constructed of concrete, steel, and glass. The traditional 
weak-signal-tracking technique of extending the signal-in-
tegration time and lowering the tracking-loop bandwidths 
can be useful to slow the rate of frequency unlock during 
such fading but not for actually recovering a weak signal 
from the noise, as there is simply no signal to recover.

Carrier-phase-based GNSS positioning—also referred to as 
precise GNSS positioning even though it actually offers 
absolute accuracy, not just precision (repeatability)—can meet 
the most demanding accuracy requirements envisioned for 
automated and connected vehicles but has historically been 
either too expensive or too fragile, except in open areas with a 
clear view of the overhead satellites, for widespread adoption.
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Figure 1 illustrates this fact. The initial disturbance at 
950 s is due to an overhead traffic light. This is followed in 
rapid succession by a complete signal blockage due to a tall 
building on the south side of the east-west street, a brief 
(4-s) interval of clear satellite availability as the receiver 
catches a glimpse of the signal between two buildings, and 
another signal eclipse by a second building.

A GNSS receiver designed for urban tracking will make 
full use of such between-building glimpses. This requires 
the immediate (within approximately 100 ms) recovery of 
full-cycle phase lock, which is only possible on suppressed-
carrier signals like GPS L1 C/A if the receiver can accurate-
ly predict the modulating data symbols. Downstream RTK 
processing must also be poised to exploit signal glimpses 
by identifying and rejecting observables from blocked or 
otherwise compromised signals and by immediately re-
evaluating the corresponding integer ambiguities when 
signals reappear. A multistage cycle-slip detection and re-
covery technique, such as the one proposed in [19], is too 
slow for urban positioning.

A related hallmark of the urban mobile channel is the 
wide and rapid variation of the number of signals available 
for RTK positioning. The number NDD  of double-difference 
(DD) signals (each one providing a DD pseudorange and a 
DD carrier phase observable) varies widely whenever the 
vehicle is moving. The implication for RTK processing is 
that integer-ambiguity continuity will often be lost, requir-
ing the rapid and continuous re-estimation of ambiguities.

System Description

Overview
The GNSS components of this article’s precise positioning 
system are shown in Figure 2. The subcomponents enclosed 
in the gray box are the target of the present work’s optimi-
zation efforts for good performance in urban environments.

Two rover antennas feed analog signals to a radio-fre-
quency (RF) front end, which downmixes and digitizes the 
signals, producing a stream of IF samples. The RF front end 
used in the present work produces samples at 10 MHz for 
two antennas and two frequencies: a band centered at GPS 
L1 and one centered at GPS L2. The (single-sided) analog 
bandwidth of each band is 4 MHz—wide enough to capture 
more than 90% of the power in the GPS L1 C/A, Galileo E1 
BOC(1,1), and GPS L2C signals.

Four IF sample streams, one for each antenna and band, 
are fed to PpRx, an embeddable, multifrequency software-
defined GNSS receiver developed primarily at the University 
of Texas at Austin [20]–[22]. PpRx draws ephemeris data, GPS 
LNAV, and SBAS [Wide Area Augmentation System (WAAS)] 
data bit estimates from the Longhorn Dense Reference Net-
work (LDRN), a set of eight GNSS reference stations deployed 
in Austin, Texas. Each reference station in the LDRN runs a 
strict real-time variant of PpRx and sends its data to a cen-
tral network server, from which any compatible receiver can 
draw assistance data and network observables.

PpRx feeds code and carrier observables—and oth-
er useful signal information—to an RTK engine called 
PpEngine. For the results presented in this article, PpEn-
gine draws observables and ephemeris data from a single 
LDRN reference station at a time, the traditional RTK topol-
ogy. The precise solution produced by PpEngine is a fixed 
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FIG 2 The University of Texas’ precise positioning system. RF: radio 
frequency; LDRN: Longhorn Dense Reference Network.
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arriving from the south to a vehicle traveling west on an urban roadway. 
The 20-ms LNAV navigation data bits have been wiped off to allow for full 
carrier cycle recovery. Rapid fading—and rapid recovery—occur as 
buildings intermittently block the signal. 
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(integer-resolved) or float solution 
depending on the results of an inte-
ger aperture test [23].

Performance Metrics
The performance of precise po-
sitioning systems in safety-of-life 
applications is assessed in terms of 
integrity, accuracy, and availabil-
ity [24], [25]. For several emerging 
applications of practical interest, such as automated and 
connected vehicles, no regulatory body has set clear posi-
tioning performance requirements. An industry consensus 
appears to be emerging, one that calls for a 95% accuracy 
requirement of 30 cm, but it is not clear what the associ-
ated integrity risk or continuity requirements should be. It 
is likely that the U.S. National Highway Traffic Safety Ad-
ministration, and other regulatory bodies worldwide, will 
eventually issue positioning performance requirements 
for connected and automated vehicles.

This article focuses on four related performance met-
rics: 1) ,d95  the 95th-percentile error magnitude for fixed 
solutions; 2) ,PV  the probability (or rate in continuous tri-
als) that a validated (fixed) solution is available at each 
epoch, as opposed to a fallback float solution; 3) ,PS  the 
probability of correctly (successfully) resolving the full in-
teger set at each epoch; and 4) ,PF  the probability that one 
or more integer ambiguities failed to resolve correctly at 
each epoch [24]. ,PV  ,PS  and PF  are related by .P P PV S F= +  
A fourth probability, ,P P P P1 1U F S V= - - = -  that of the 
undecided event, is the probability that a float solution, or 
no solution at all, is produced, due to an aperture test fail-
ure or failure of some other validation test.

An unavoidable tradeoff between PS  and PF  exists 
such that any widening of the integer aperture region to 
increase PS  comes at the expense of an increase in PF  
(not necessarily of the same amount) [26]. Therefore, an 
optimization problem can be stated in terms of PS  and 
PF  as follows: maximize PS  for ,P PF F# r  where PFr  is a 
fixed tolerable probability of failed fixing. Integer aper-
ture bootstrapping techniques such as those presented in 
[26] and its generalization to partial ambiguity resolution 
in [24] analytically determine thresholds for the integer 
aperture test to ensure .P PF F# r  For the optimal integer 
least squares (ILS) approach adopted in this article, it is 
not possible to calculate an analytical aperture threshold, 
but an approximate one can be obtained via simulation 
such that P PF F# r  is satisfied almost surely [27]. A value 
of .P 0 001F =r  was adopted for this article, meaning that 
a fixing failure rate of less than one in 1,000 epochs was 
deemed acceptable. However, multipath, GNSS signal pas-
sage through foliage and other signal impairments com-
mon in urban areas cause the empirical PF  to significantly 
exceed PFr  when the aperture threshold is chosen accord-

ing to the Gaussian error assumptions ubiquitous in the 
integer aperture literature. Thus, a looser empirical upper 
bound, ,PFrr  must be chosen. The optimization problem is 
then to maximize PS  subject to the empirical PF  respect-
ing the bound .P PF F# rr

Design Philosophy
With origins in scintillation-resistant carrier tracking [28], 
[29], PpRx was designed from the beginning for robust car-
rier recovery. Likewise, from its inception, PpEngine was 
targeted for the harsh urban environment. Over the past 
few years, the development of PpRx, PpEngine, and the 
LDRN has proceeded as a parallel evolution, with each sub-
system benefiting from the improvements in the others.

The overriding design philosophy of this development 
has been to adapt, rebuild, and reconfigure all three 
subsystems, separately and in parallel, with the goal of 
minimizing d95  while maximizing ,PV  or, relatedly, maxi-
mizing PS  subject to .P PF F# rr  This approach benefits 
greatly from a purely software-based approach to GNSS 
signal processing (as opposed to processing that exploits 
dedicated silicon or field-programmable gate arrays) for 
two reasons. First, a software-defined approach is almost 
infinitely flexible: all processing downstream from the RF 
front end can be reconsidered, rebuilt, and re-evaluated 
in a rapid iterative process using an efficient and common 
high-level programming language. Second, software-de-
fined receivers can exploit multiple cores to run faster than 
real time on recorded IF samples [21]. The PpRx-PpEngine 
pipeline runs at 10-times real time on a six-core Intel Xeon  
2.27-GHz processor, enabling rapid iteration cycles for 
quickly probing the optimization landscape.

Carrier and Code Tracking
GNSS carrier and code tracking in an urban environment 
must be opportunistic, taking advantage of short, clear 
glimpses of overhead satellites as they present themselves. 
PpRx’s code- and carrier-tracking architecture, illustrated 
in Figure 3, has been designed for the immediate (within 
approximately 100 ms) recovery of full-cycle phase lock 
after a blockage, and, importantly, for prompt lock indi-
cation. The following sections describe the essential ele-
ments of PpRx’s tracking strategy, calling out parameters 
whose values significantly affect urban RTK performance.

An unavoidable tradeoff between PS and PF exists such that any 
widening of the integer aperture region to increase PS comes at 
the expense of an increase in PF.
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Correlation and Accumulation
Correlation and accumulation is performed on a sequence 
of noisy IF samples ( ),  , , ... ,x j 0 1jx =  where jx  denotes 
the time of the jth sample according to the receiver’s 
clock. Within the correlation and accumulation block, 
a complex, local replica signal is formed with code and 
carrier-phase estimates ( )ts jxt  and ( )ji xt  provided by the 
code and carrier-phase-tracking loops. The outputs of the 
correlation and accumulation block are prompt, early, and 
late complex-correlation products ,Sk  ,S ,e k  and S ,l k  of the 
form ,S I jQk k k= +  where Ik  and Qk  are the in-phase and 
quadrature accumulations. (The green and blue traces in 
Figure 1 correspond to Ik  and Qk , respectively.) The ac-
cumulation interval, ,Ta  is an important configuration pa-
rameter for urban RTK.

Navigation Data Bit Wipeoff
The GPS L1 C/A and SBAS L1 signals have no dedicated pi-
lot component. The phase ambiguity introduced by their 
full, suppressed-carrier binary modulation makes it chal-
lenging to recover an accurate carrier-phase measurement 
in an urban environment. However, the reference network 
can provide low-latency estimates dk

t  with which the in-
coming modulation can be “wiped off,” allowing full-cycle 
carrier recovery.

GPS L1 C/A data bit wipeoff has been employed for years 
to improve weak-signal acquisition in smartphones [30] 
but, as far as we are aware, it has not been previously ap-
plied in the context of CDGNSS positioning. SBAS L1 data 

wipeoff, a novel technique introduced in this article, is 
even more valuable on a per-signal basis than GPS L1 C/A 
data wipeoff because the short, 2-ms binary SBAS symbol 
period otherwise renders SBAS signals of little use for ur-
ban-precise positioning. 

Lock Statistic Calculation
Also key to robust urban RTK is the ability to exclude cor-
rupt or otherwise inaccurate carrier-phase measure-
ments. However, due to poor signal availability, an urban 
RTK engine cannot afford to be overly conservative: it must 
minimize the number of adequate-quality measurements 
that get falsely labeled as corrupt. An important indicator 
for this wheat-from-tares separation is the lock statistic .si  
Let I and Q be coherent sums of Ik  and Qk  over NL  accu-
mulation intervals. Then si  is calculated as [31]

.s
I Q
I Q

2 2

2 2

=
+

-
i

The goal of the carrier-tracking loop is to adjust its phase 
estimate kit  to shift signal power from Qk  to Ik . Thus, for a 
loop in lock, I Q2 222  and si  is near unity.

A new lock statistic is produced every NL  accumula-
tions. NL  must be chosen large enough to suppress thermal 
noise in Ik  and Qk , but small enough to provide a prompt 
indicator of phase lock to all dependent processing. PpEn-
gine relies crucially on si  to screen out bad measurements. 
Note from Figure 3 that si  is also fed to the code-tracking 
loop and to PpRx’s central state estimator: each one adapts 
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FIG 3 The PpRx’s carrier- and code-tracking architecture.
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its behavior to rely less on Doppler measurements when 
si  is low.

Carrier Tracking
As shown in Figure 3, PpRx employs a vector signal-track-
ing architecture wherein a central estimator, implemented 
as a Kalman filter with a nearly constant-velocity dynam-
ics model, receives observables from all tracking chan-
nels and drives local replica generation for each channel 
[32]. More particularly, PpRx employs a hybrid strategy 
in which, for each channel, a local phase-tracking loop is 
closed around a modeled Doppler value fDr  provided by the 
central estimator. The local loop’s residual Doppler fre-
quency estimate fDD t  is added to fDr  to produce the full es-
timate fDt  used in replica generation.

A four-quadrant arctangent phase discriminator, 
( , ),tana Q I2 k k  which is nearly optimal for decision-di-

rected carrier recovery and optimal for data-free signals, 
or when data bit wipeoff is error-free, feeds a phase-error 
measurement at every accumulation interval to the carrier-
tracking loop filter. PpRx’s carrier loop filter is designed ac-
cording to the controlled-root formulation of [33]. The filter 
adapts its bandwidth Bi  at every accumulation interval ac-
cording to the value of | | .Sk  The adaptation schedule has a 
significant effect on RTK performance.

One might expect that adapting Bi  to maintain a con-
stant-loop signal-to-noise ratio as | |Sk  varies would yield 
the best results. This is effectively the adaptation schedule 
that gets applied in Kalman filter-based weak-signal track-
ing [17]. However, this reasonable approach was found to 
yield reduced urban RTK performance. More effective is a 
three-tiered schedule that reduces Bi  when | |Sk  falls be-
low a fairly low threshold, ,1c  and sets Bi  to zero if | |Sk  
falls below another threshold, that is, .0 11c c  Within this 
lowest tier, fDD t  is also driven to zero over a few accumula-
tion intervals, thereby breaking the local feedback loop. In 
this open-loop mode, the local replica’s phase estimate is 
driven entirely by the model Doppler fDr . The lock statistic 
si  continues to be calculated. If si  is sufficiently close to 
unity, the central estimator, code-tracking loop, and RTK 
engine continue to treat ( )ji xt  as a valid measurement. But 
this is a rare occurrence; si  is typically far from unity in 
open-loop mode.

Such open-loop tracking is useful for preventing fre-
quency unlock during intervals when signals are entirely 
blocked, e.g., by buildings or bridges, and for enabling 
fast reacquisition of carrier lock immediately following 
the blockage.

Code Tracking
PpRx’s code-tracking loop, which is aided by the Doppler 
estimate fDt , is implemented as a first-order loop that tog-
gles between a noncoherent (dot product) discriminator 
and a coherent discriminator. The coherent discriminator 

is applied when the channel is phase locked and no recent 
phase trauma (indicated by si ) has been detected; other-
wise, the noncoherent discriminator is applied. A flag at-
tached to each code-phase measurement ( )ts jxt  indicates 
to downstream processes whether it was produced under 
coherent or noncoherent tracking.

As with carrier tracking, the code-tracking loop filter’s 
bandwidth, ,Bts  is adaptive. But rather than responding to 
| |Sk  as the carrier loop’s bandwidth does, Bts  takes on a 
different value for each of four code-tracking modes: 1) 
prephase lock, 2) first postlock transient, 3) second post-
lock transient, and 4) steady state. These modes are de-
signed to ensure the rapid convergence of the code-phase 
estimate ( )ts jxt  after initial signal acquisition or in the af-
termath of phase unlock.

Precise Positioning
PpRx and the LDRN send carrier and code phase observ-
ables, together with signal quality indicators si  and / ,C N0  
and various other metadata to PpEngine for processing.  
PpEngine is capable of processing observables from both 
rover antennas simultaneously, exploiting the known dis-
tance between these. But for the results presented in this 
article, PpEngine was invoked only in its simplest single-
antenna mode, producing a precise 3D baseline between 
the primary rover antenna and a selected reference station 
antenna in the LDRN. This simple, single-baseline RTK 
mode was chosen so that the precise positioning system’s 
performance could be evaluated in a familiar configuration 
and easily compared with other single-baseline RTK evalu-
ations such as those in [8].

Treatment of Real- and Integer-Valued States
The current embodiment of PpEngine adopts a straightfor-
ward approach to RTK. It first forms code and carrier mea-
surement DDs from the rover and reference data and then 
sends these to a mixed real/integer extended Kalman filter 
for processing. The filter is implemented as a square-root 
information filter, as in [34], but limits the growth of the 
number of integer states by either marginalizing at each 
epoch over float-valued integer-ambiguity states modeled 
as Gaussian-distributed or conditioning on the estimated 
integer values. Thus, PpEngine’s current approach is to 
discard all integer states, by marginalization or by condi-
tioning, after each measurement epoch. The marginaliza-
tion option, which yields the float solution, can be thought 
of as a special case of the suboptimal filter in [34] with win-
dow length .i 1=  The conditioning option, which yields 
the fixed solution, is invoked only if the integer estimates, 
found by ILS [35], are validated by an aperture test.

Conditioning the real-valued states on the low-
est-cost integer estimates yields a maximum a poste-
riori 3D baseline estimate. After each measurement 
update, the real-valued states are propagated to the next 
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measurement epoch, whereupon a new set of integer es-
timates are formed and conditioning or marginalization 
occurs yet again. Importantly, if the integer states are 
validated at the lth measurement epoch, it is the integer-
conditioned real-valued states that are propagated to the 
( )l 1+ th measurement epoch. Thus, although all integer 
states are discarded between measurement updates, cor-
rect integer resolution is highly likely at the ( )l 1+ th ep-
och if integer ambiguities were correctly resolved at the 
lth epoch because the real-valued states carry forward a 
decimeter-accurate position estimate.

Carrying forward integer-conditioned real-valued states 
is perilous because eventually an erroneous integer esti-
mate passes the aperture test, whereupon the integer-con-
ditioned real-valued states are corrupted by conditioning 
on the incorrect fix. What is more, the associated square-
root information matrices indicate high confidence in the 
erroneous real-valued state, raising the chances that the 
next integer estimates, which are constrained by the prior 
real-valued states, will also be incorrectly fixed. This cycle, 
which can persist for several seconds, is eventually broken 

by an aperture test failure prompted by signal loss, large 
measurement errors, or the persistent lack of consistency 
between the incoming observables and the current state.

In view of this peril, we are developing a generaliza-
tion of PpEngine that can manage growth in the number 
of integer state elements using a variant of the suboptimal 
approach depicted in [34]. Meanwhile, PpEngine’s single-
epoch integer resolution has the virtue of being insensitive 
to the cycle slips that occur between measurement epochs, 
which are common in the urban environment.

Dynamics Model
Because this article’s focus is on RTK unaided by any non-
GNSS sensors, the mixed real- and integer-valued state 
estimator within PpEngine was configured to ignore all of 
the available inertial measurements and instead rely on a 
simple, nearly constant-velocity dynamics model for state 
propagation between measurements. The dynamics model 
assumes roughly equivalent process noise variance in the 
along- and cross-track directions, but smaller variance (by a 
factor of 100) in the vertical direction, in keeping with a land 
vehicle operating in a relatively flat urban environment.

Robust Measurement Update
Urban multipath and diffraction cause code and carrier ob-
servables to exhibit large errors with a much higher prob-
ability than even a conservative Gaussian model would 
predict. Dealing with measurement-error processes such 
as these, which have thick-tailed distributions, requires 
robust estimation techniques; that is, techniques with re-
duced sensitivity to measurement outliers.

Outliers are especially problematic for integer fixing in 
RTK positioning. By action of the decorrelation adjustment 
preceding ILS, a single bad measurement can contami-
nate multiple measurements in the decorrelated domain, 
rendering resolution of the associated integers impossible. 
Partial ambiguity resolution, as in [36] and [37], offers little 
relief in such cases because contamination caused by out-
liers is not necessarily limited to an identifiable subset of 
integers. It is more effective to exclude questionable mea-
surements before the decorrelation adjustment.

PpEngine implements a multilevel exclusion process, 
depicted in Figure 4, to mitigate the effects of measure-
ment outliers. At each measurement epoch, measurements 
are first screened on the basis of three quality indicators: 
carrier-to-noise ratio / ,C N0  phase lock statistic ,si  and 
elevation angle .eli  Signals whose values fall below user-
selected thresholds for these quantities are excluded from 
all DD combinations.

A second level of exclusion occurs as part of the float 
solution. A 2| -type test is applied to all DD measurement 
innovations [38], with exclusion triggered if the normalized 
innovations squared statistic exceeds a chosen threshold. 
For the current implementation of PpEngine, this test is only 
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FIG 4 The flow diagram for the PpEngine exclusion and fixing logic. IA: 
integer aperture.  
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effective at excluding anomalous DD code-phase (pseudor-
ange) measurements because the float states are discarded, 
and thus unconstrained, from epoch to epoch. Note that 
innovations testing benefits strongly from a correctly inte-
ger-constrained state because the exclusion threshold can 
be made tighter. However, with an incorrectly integer-con-
strained state, innovations testing may end up excluding the 
very measurements necessary to correct the state.

If a set of innovations fails the innovations test, DD mea-
surements (both code and carrier for a particular DD com-
bination) are excluded one at a time (with replacement). 
Exclusion is ordered such that the next DD combination 
removed is the one with the next-lowest quality score that 
has not yet been removed. A quality score is formed for 
each DD combination via a linear combination of scores 
based on / , ,C N s0 i  and .eli  If such N-choose-1 elimination 
fails to create a subset of DD measurements that passes 
the innovations test, exclusion can proceed to N-choose-m 
elimination, with m > 1. If a user-configurable exclusion 
depth is exceeded, the estimator state is reset.

The third level of exclusion is based on the integer ap-
erture test following integer estimation via ILS. This is the 
standard data-driven integer-fixing process whereby the 
integer-fixed solution is selected only upon successful vali-
dation by some type of aperture test; otherwise, the float 
solution is accepted [24]. The aperture test is configured for 
a fixed failure rate (under independent Gaussian errors) of 

.PFr  If the integer aperture test fails, N-choose-1 exclusion 
(with replacement) is attempted, starting with the lowest-
scoring DD combinations and working up through higher-
scoring combinations. N-choose-m exclusion, with m > 1, is 
currently not attempted at this layer of exclusion because 
testing a large number of subsets is eventually “doomed to 
succeed” at passing the aperture test, causing PF  to sig-
nificantly exceed PFr  even under benign conditions [37].

If the aperture test is passed before the permissible ex-
clusion depth is exceeded, the solution is conditioned on the 
integers and the integer states are dropped; otherwise, the 
integer state elements are marginalized out as float values. 
In either case, the state is propagated to the next measure-
ment epoch via the dynamics model and the process repeats.

Experimental Setup
The precise positioning system was evaluated experimen-
tally using data collected on 1 August 2018 during approxi-
mately 2 h of driving in and around the dense urban center 
of Austin. The rover GNSS receiver is one among several 
sensors housed in an integrated perception platform called 
the Sensorium, which is displayed in Figure 5. Although 
hardly visible in Figure 5, two Antcom G8 triple-frequency 
patch antennas are flush mounted in the cross-track direc-
tion on the Sensorium’s upper plate, separated by slightly 
more than 1 m. The antennas’ signals are routed to a uni-
fied RF front end whose output IF samples are processed in 

real time (to within less than a 10-ms latency) by the Sen-
sorium’s onboard computer. The samples are also stored to 
disk for postprocessing.

Data from both the driver- and passenger-side antennas 
were used to produce the PpRx standard navigation solu-
tion, but only data from the driver-side antenna were used 
in the urban RTK performance evaluation. No other Senso-
rium sensors were involved in the current article’s results.

The test route, presented in Figure 6, runs the gamut of 
light-to-dense urban conditions, from open sky to narrow 
streets with overhanging trees to the high-rise urban city 
center. A time history of route coordinates, in the form of 
a Google Earth KML file, is packaged with the other cam-
paign data so that readers can explore the route. The route 
begins with a 10-min stationary interval and ends with a 
4-min stationary interval in open-sky conditions to allow 
confident bookending for the ground-truth system. The 
number NDD  of DD signals available to PpEngine at each 
epoch over the 2-h test interval ranged from one to 18, with 
an average of 12.5.

Ground-Truth Trajectory
A trustworthy ground-truth trajectory against which to 
compare the reported trajectory of the system under test 

FIG 5 The University of Texas’ Sensorium is a platform for automated and 
connected vehicle perception research. It includes stereo visible-light 
cameras, an industrial-grade IMU, an automotive radar unit, a dual-
antenna, a dual-frequency software-defined GNSS receiver, 4G cellular 
connectivity, and a powerful internal computer. 

FIG 6 An overview of the test route through the urban core of Austin, 
Texas. (Source: Google Maps.)
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is indispensable for urban positioning evaluation. The 
ground-truth generation process described in [16] was un-
satisfactory for two reasons. First, it lacked independence, 
as it drew, in part, on the same underlying precise solu-
tions that were to be evaluated. Second, it was not possible 
to create a complete ground-truth trajectory even for the 
moderate urban test route discussed in [16]. Gaps in the 
ground truth prevented an accurate determination of PF .

The present work adopts the more traditional approach of 
taking the forward-backward smoothed trajectory generated 
in after-the-fact processing by a coupled RTK-inertial sys-
tem with a tactical-grade IMU as the ground truth [8], [14]. 
In particular, an iXblue ATLANS-C mobile mapping inertial 
navigation system/GNSS system, which incorporates a pro-
fessional-grade Septentrio AsteRx3 RTK receiver, was used 
to generate the ground truth [39]. The ATLANS-C was rigidly 
mounted to the Sensorium and attached to the same anten-
na from which PpEngine drew observables. A cm-accurate 
lever-arm estimate from the inertial sensor to the GNSS an-
tenna was determined. The self-reported 3D accuracy of the 
ATLANS-C’s smoothed estimate varied between 2 and 20 cm 
(1-sigma) along the test route. Along the light-to-moderate 
urban portions of the test route, the ATLANS-C and PpEn-
gine 3D estimates agreed to better than 5 cm (95%).

Baseline System Performance
The baseline urban RTK system is the PpRx-PpEngine pipe-
line configured to maximize PS  while respecting P PF F# rr  
for some chosen, empirical, incorrect fixing-probability 

bound .PFrr  This section discusses 
the baseline system’s configuration 
and performance, while the follow-
ing section compares the baseline 
system against several alternative 
configurations of the PpRx-PpEn-
gine pipeline.

Configuration
PpRx’s carrier- and code-tracking 
loops were configured as detailed 
in [16]. PpRx was set to track the fol-

lowing signal types: GPS L1 C/A, GPS L2C (combined M + 
L tracking), Galileo E1 BOC(1,1) (combined B + C tracking), 
and SBAS (WAAS) on L1. It was configured to output ob-
servables at 5 Hz. 

PpEngine was conf igured as fol lows. The master 
LDRN reference station, located within 4 km of all points 
on the test route, was taken as the reference receiver, 
producing reference observables at 5 Hz. The master sta-
tion’s antenna is a Trimble Zephyr II geodetic antenna. 
A single-baseline RTK solution with a near-zero age of 
data was performed between the rover’s primary antenna 
and the reference station at a 5-Hz cadence. The follow-
ing thresholds were applied in the first-level screen-
ing processing within PpEngine: / .C N 37 50 $ -dB Hz, 

. ,s 0 5$i  and .15el c$i  Signals whose values fell below 
any one of these thresholds were excluded from al l 
the DD combinations. Elevation-dependent weighting 
was applied in the float solution. The threshold above 
which float-innovation statistics failed the normalized-
innovation squared test was chosen to be two. Scored 
N-choose-1 exclusion was applied for both failed float-
innovations tests and failed aperture tests. A depth of 
eight signals was allowed for the N-choose-1 exclusion, 
after which the estimator was either reset or the integers 
marginalized, according to the flow diagram in Figure 4.  
The difference test of [27], which was found to work as 
well in urban environments, was chosen as the integer 
aperture test. The test was configured for a fixed failure 
rate of . .P 0 001F =r  The undifferenced pseudorange and 
phase-measurement error were taken to be .  0 9 mv =t  
and 4 mm,v =z  respectively. The nearly constant-veloci-
ty dynamics model was configured for a 0.4- and 0.06-m/s 
deviation in horizontal and vertical velocity, respectively, 
over a 1-s interval.

A calibration was carried out of the Sensorium anten-
nas’ phase center variation with elevation angle relative to 
the reference antenna. The calibration procedure is similar 
to the one presented in [40] except that it works with DDs 
instead of single differences. The calibration succeeded 
in reducing the standard deviation of L1 and L2 undiffer-
enced carrier-phase residuals by 11 and 15%, respectively, 
in open-sky conditions.
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FIG 7 The cumulative distribution function (CDF) for horizontal and 
vertical fixed-position error magnitudes with respect to the ground truth 
for the baseline system. 

The positioning performance appears excellent, with 95% of 
horizontal and vertical errors below 14 and 8 cm, respectively. 
That the vertical errors are smaller than the horizontal errors is 
explained by the vehicle motion’s greater vertical predictability.
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FIG 8 The CDF for baseline system-availability gaps.

Performance
Figure 7 shows the cumulative distribution function 
(CDF) of the horizontal and vertical positioning errors for 
fixed (aperture test-validated) PpEngine solutions. The 
positioning performance appears excellent, with 95% of 
horizontal and vertical errors below 14 and 8 cm, respec-
tively. That the vertical errors are smaller than the hori-
zontal errors is explained by the vehicle motion’s greater 
vertical predictability.

Figure 8 depicts the CDF of availability gaps in the 
baseline system’s fixed solution. These are intervals dur-
ing which only a less-accurate float solution is available. 
Although the longest gap was 90 s, more than 99% of gaps 
are shorter than 2 s, a span that could be easily bridged by 
a microelectromechanical systems-quality inertial sensor 
with errors smaller than a few centimeters [6].

The baseline system’s fixed-solution availability, ,PV  
was 87.2%. Fixed solutions were considered correctly 
resolved if their 3D positions were within 30 cm of the 
ground truth. This led to . %P 84 8S =  and . %.P 2 4F =  Note 
that PF  is a factor of 24 larger than . %P 0 1F =r  but may be 
tolerable for a larger system that combines standalone RTK 
with inertial and electro-optical sensing, as the Sensorium 
shown in Figure 5 is intended to do.

Performance Degradation Analysis
This section presents a performance-degradation analysis 
in which features of the baseline system are removed or 
altered one at a time to assess their relative contribution to 
baseline system performance. Table 1, where ,PV  ,PS  and 
PF  are as defined previously, summarizes the results of 
the analysis. Starting with sce-
nario 2, the following discussion 
treats each scenario in turn.

Data Bit Prediction Disabled
Eliminating the baseline’s sys-
tem’s LNAV and SBAS data bit pre-
diction capability, described in 
the “Navigation Data Bit Wipeoff” 
section, has a devastating effect 
on performance. The availability 
of validated epochs drops by eight 
percentage points and PF  rises 
tremendously, from 2.4 to 25%. 
Clearly, data bit prediction is a key 
capability for urban RTK.

Scalar Tracking With Adaptive Bi
Eliminating vector tracking, as 
described in the “Carrier Track-
ing” section, in favor of scalar 
tracking, but retaining carrier-
tracking loop-bandwidth adap-

tation, has no significant effect on PV  but increases PF  
slightly, from 2.4 to 3%. Thus, vector tracking appears 
helpful but not critically so.

Scalar Tracking With Fixed Bi
Eliminating both vector tracking and carrier-tracking 
loop-bandwidth adaptation has little effect on availability, 
but PF  rises to 6.2%, indicating that loop-bandwidth adap-
tation is useful in preventing fixing errors.

GPS L2CL Tracking
For GPS L2C tracking, PpRx jointly tracks the pilot (CL) 
and data-bearing medium-length (CM) codes, wiping 
off the INAV data symbols modulating the CM code with 
symbol-value estimates based not on prediction, as with 
LNAV, but merely on observation. The rationale for this 
strategy is that the CL pilot renders prediction less neces-
sary than for the GPS L1 C/A signal, which does not enjoy a 
pilot. Eliminating joint L2C L + M tracking in favor of pure 

Scenario Description 
PV : Validated 
Epochs (%)

PS: Success 
(%)

PF : Failure 
(%)

1 Baseline system 87.2 84.8 2.4 

2 LNAV and SBAS data bit prediction disabled 79.4 54.4 25

3 Scalar tracking with adaptive Bi 87.1 84.1 3 

4 Scalar tracking with fixed Bi  86.9 80.7 6.2 

5 GPS L2CL tracking 83.2 80.8 2.3 

6 Age of data = 200 ms 87.4 85 2.4 

7 Age of data = 400 ms 87.3 83.8 3.5 

8 Age of data = 600 ms 87.2 82.1 5.1 

9 Age of data = 1,000 ms 87 82 5

10 15-km baseline 86.6 78.9 7.7 

11 Without SBAS 78.6 73.1 5.5 

12 Without GPS L2C (L + M) 83.6 82.5 1.1 

13 Without Galileo E1 (B + C) 77.4 75.9 1.4 

14 No scored exclusion 78.8 75.6 3.2 

15 No antenna calibration 87 82.8 4.2 

Table 1. A summary of precise positioning results.
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L2CL tracking might be considered a more reliable strat-
egy given that no symbol wipeoff mistakes are ever made 
when tracking only the pilot. However, Table 1 indicates 
that this leads to a drop in availability with hardly any im-
provement in the error rate. Thus, it appears that joint CL 
and CM tracking is preferred.

Age of Data
Scenarios 6–9 explore the effect of increased age of the 
reference data, from the baseline age (near-zero latency 
relative to the rover stream) to 1 s. Little reduction occurs 
in ,PV  but there appears a somewhat steady increase in PF  
after 200 ms.

15-km Baseline
The baseline system’s distance to the reference receiver, 
referred to as the reference-rover baseline, is no greater 
than 4 km. For scenario 10, the LDRN alternate master sta-
tion, which sits 15 km from the furthest portion of the test 
route, was instead taken as reference. The alternate mas-

ter station has a Trimble Zephyr 
II antenna identical to the master 
station’s. A 15-km baseline might 
still be considered within the short-
baseline regime for standard RTK 
[41]. Nonetheless, a slight decrease 
in PV  and a significant increase in 
PF  is observed, consistent with the 
argument in [42] that a dense refer-
ence network is helpful in urban 
settings with reduced signal avail-

ability. Figure 9 also shows a significant degradation in 
overall fixed-position accuracy.

Value of Additional Signals
Scenarios 11–13 explore the degradation that occurs when 
all signals of a particular type are eliminated from the 
RTK solution. Curiously, dropping L2C and Galileo from 
consideration significantly reduced ,PF  likely due to the 
misfortune that both groups were composed primarily of 
low-elevation satellites (below 30°) during the test run. By 
contrast, one notes a significant increase in PF  as the four 
available SBAS satellites are removed from consideration. 
Clearly, data-wiped SBAS signals offer significant strength 
to the solution.

Scored Exclusion
Scenario 14 removes the scored exclusion strategy de-
scribed in the “Robust Measurement Update” section by 
setting the exclusion depth to 0. This caused a noticeable 
reduction in PV  and a slight increase in PF .

Antenna Calibration
Scenario 15 indicates that a lack of rover antenna cali-
bration has no discernible effect on PV  but increases PF  
significantly. The effect would no doubt be larger for low-
er-quality rover antennas.

Performance Comparison
To further assess its performance, the PpRx-PpEngine 
system was compared against three alternative sys-
tems: 1) A high-end commercial RTK system, i.e., a 
Septentrio AsteRx3 receiver attached to the same GNSS 
antenna as the PpRx-PpEngine system, with RTK solu-
tions produced by Septentrio’s RTK engine taking ref-
erence data from the Continually Operating Reference 
Station station TXAU, which sits less than 5.4 km from 
the furthest portion of the test route; 2) a state-of-the-
art PPP solution from the CSRS-PPP service [43] (ver-
sion v2.26.0 from March 2019) based on observables 
produced by the same receiver as in 1), processed in a 
“batch kinematic” mode; and 3) the so-called enhanced 
code-phase positioning (ECPP) solution [3] from PpRx, 
which draws on precise orbit and clock models from the 

System Availability (%) PF: Failure (%) d95h(cm)

PpRx-PpEngine 77 0.7 7.5 

Commercial RTK 61 0.8 8.6 

CSRS-PPP 74 N/A 154 

ECPP 100 N/A 275 
N/A: not applicable.

Table 2. The comparison results.
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FIG 9 The CDF for horizontal and vertical fixed-position error magnitudes 
with respect to the ground truth for scenario 10. 

PpRx-PpEngine enjoys a 16% availability advantage over the 
commercial RTK system, and neither the CSRS-PPP nor the 
ECPP solutions are close to sub-30-cm accuracy.
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International GNSS Service [44], a WAAS ionospheric 
model, and RF signals from both the passenger- and 
driver-side Sensorium antennas.

Note that the receiver described in 1) and 2) is the very 
receiver used to generate the ground-truth trajectory, 
but for this comparison, its data were processed without 
aid from the ATLANS-C IMU. Also, to ensure a fair com-
parison, PpEngine exclusion and validation tests were 
tightened (at the expense of solution availability) until its 
probability of incorrect fix, ,PF  was less than that of the 
commercial RTK system.

Table 2 lists the comparison results in terms of solu-
tion availability (equivalent to PV  for the PpRx-PpEn-
gine and Septentrio RTK systems), PF  (which applies 
only to the PpRx-PpEngine and Septentrio RTK systems, 
as the other two do not attempt integer fixing), and ,d h95  
the horizontal 95th-percentile positioning error. Signif-
icantly, PpRx-PpEngine enjoys a 16% availability ad-
vantage over the commercial RTK system, and neither 
the CSRS-PPP nor the ECPP solutions are close to sub-
30-cm accuracy.

Conclusions
In this article, an RTK positioning system tailored for ur-
ban vehicular positioning was described and evaluated. 
To facilitate performance comparison against similar 
systems, the system was tested without the benefit of aid 
by inertial or electro-optical sensors. Over nearly 2 h of 
urban testing, including multiple passes through Austin’s 
dense urban center, the system achieved an 85% probabil-
ity of correct integer fix for a 2.4% probability of incorrect 
fix, resulting in 3D positioning errors smaller than 17 cm 
(95%). A performance-sensitivity analysis revealed that 
navigation data bit prediction on fully modulated GNSS 
signals is key to high-performance urban RTK position-
ing, and that a dense reference network, carrier-tracking 
bandwidth adaptation, and rover antenna calibration each 
offer a significant integrity benefit. A comparison with ex-
isting unaided systems for urban GNSS processing indi-
cates that the proposed system has a significant advantage 
in availability and/or accuracy.
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