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Abstract—The next generation of XR devices will require
seamless functionality in any environment and require globally
referenced poses. This paper introduces a public benchmark
dataset for extended reality (XR) headset tracking in a variety of
outdoor environments. The dataset includes raw GNSS interme-
diate frequency samples, timestamped measurements from three
inertial measurement units, and globally shuttered stereoscopic
cameras, all collected on a head-mounted sensor platform. Our
benchmark dataset recordings include data collected in urban,
light-urban, and open field environments. The dataset includes
differing levels of user dynamics corresponding to pedestrian and
gaming use cases. Similar datasets exist for ground and aerial
vehicle-mounted sensor platforms. However, no dataset currently
exists for head-mounted XR platforms with this combination of
sensors. This dataset enables the evaluation of computer vision
and sensor fusion algorithms for headset tracking on real-world
data.

I. INTRODUCTION

Extended reality (XR) devices, which encompass virtual,
augmented, and mixed reality devices, have become useful
tools in several industries such as education, design, and
entertainment [1]–[3], and the adoption of XR is expected to
grow. The current generation of XR devices relies on camera-
based inside-out tracking using simultaneous localization and
mapping (SLAM) algorithms to determine a user headset’s
position and orientation (pose) relative to an ad-hoc local
frame such as one arbitrarily anchored to a living room. The
reliance on relative pose, as opposed to an absolute measure
with respect to a well-defined global reference frame such as
the International Terrestrial Reference Frame (ITRF), hinders
collaboration between XR headsets in building and maintain-
ing feature maps [4], [5]. The next generation of XR devices
will be expected to function seamlessly and collaboratively
in all environments, both indoor and outdoor. To bridge the
gap into outdoor environments and unlock the full potential
of XR, enabling natural user motion in ever-expansive virtual

maps [4], [5] and high data throughput [6], precise globally
referenced pose of the XR device is needed.

To develop and compare algorithms for pose estimation
of XR devices, a dataset of sensor measurements from XR
devices in common XR use cases is needed. This paper intro-
duces the TExas eXtended Reality (TEXR) publicly available
dataset tailored for XR headset pose estimation applications.
The TEXR dataset contains raw intermediate frequency (IF)
samples from two GNSS antennas, which will enable full ex-
ploration of GNSS processing techniques, GNSS observables
for the dual antennas and a reference receiver, timestamped
stereoscopic globally shuttered grayscale images, and inertial
measurement unit (IMU) measurements from two low-cost
smartphone-grade IMUs and an industrial-grade IMU. This
sensor combination enables sensor fusion at the lowest level,
combining vision, inertial, and GNSS data to deliver robust
tracking with centimeter- and degree-level accuracy.

Several datasets exist for visual and inertial navigation.
The most popular is the KITTI dataset [7], which provides
a benchmark for both visual odometry and object detection
for use in autonomous vehicles. Similarly, TEX-CUP [8] and
UrbanNav [9] are benchmark datasets for urban positioning
of ground vehicles. Both contain visual, inertial, and GNSS
measurements. Although these datasets provide measurements
from sensors similar to those used in TEXR, such as stereo-
scopic cameras and IMU measurements, the scale of the
sensors is drastically different. Most notably the baseline of
the stereoscopic cameras is on the scale of 1 meter, which
is 10 times larger than the distance between cameras on an
XR device. The dynamics also differ between ground vehicles
and XR devices. Motion that may be common for an XR
user, such as rapidly turning one’s head left and right, is
impossible for ground vehicle during normal operation. On the
other hand, a ground vehicle will operate at a much higher
linear (translational) velocity compared to an XR user. In



addition, XR devices and ground vehicles operate in markedly
different environments. The existing ground vehicle datasets
are recorded on city streets, whereas XR devices operated
outdoors primarily see sidewalks, parks, and open fields.
Environments such as open parks create a challenge for SLAM
algorithms due to the scarcity of unique visual features. This
condition is not present in vehicle datasets.

Visual navigation datasets [10], [11] for aerial vehicles
and benchmark sensor fusion datasets such as the MARS-
LVIG dataset [12] collected on aerial platforms contain visual,
inertial, and GNSS measurements similar to TEXR. However,
these datasets fall short of being fully applicable to XR
positioning. Even though the scale of the sensors on aerial
platforms is similar to that of an XR device, the dynamics
and setting (e.g., proximity to surrounding objects) can be
quite different. Most notably, an aerial vehicle has a larger
range of motion in the vertical direction, while an XR device
will remain in a fixed vertical range based on a user’s height.
Similar to ground vehicles, aerial vehicles can generally reach
higher velocities compared to XR users. Another notable
difference is that aerial platforms do not operate in the same
types of environments as XR users; aerial platforms will often
be high off the ground with navigation cameras pointed at the
ground and GNSS antennas having a clear view of the sky.
Further, existing datasets do not contain the case where the
aerial vehicle’s GNSS antennas are obstructed. In contrast, an
XR device is always very close to the ground and occasionally
passes under trees or bridges, obstructing the GNSS antennas.

A benchmark dataset specific to XR is necessary for the
development of sensor fusion algorithms that are tailored to
the unique challenges faced by future outdoor XR devices.
The closest existing dataset is the HoloSet dataset [13], which
contains visual and inertial data recorded by a Microsoft
Hololens 2 for both the raw data and truth trajectory. The
HoloSet dataset is lacking GNSS data, which limits its use
for global headset tracking, and lacks trajectories in open
environments with few visual features. It is paramount that
pose estimation methods developed for XR devices be capable
of handling challenges from open-sky conditions to deep urban
canyons, from featureless open parks to feature-dense urban
landscapes, and from low dynamic strolls in the park to highly
dynamic XR games.

This paper and the TEXR dataset offer three primary contri-
butions. First, they enable researchers to explore properties of
XR sensors without having to create a sensor platform. Sec-
ond, TEXR serves as a benchmark dataset enabling researchers
to evaluate visual SLAM and sensor fusion algorithms. Third,
TEXR enables other questions in XR, such as communications
and scene rendering, to be explored by providing a real
model of XR user dynamics. The dataset is available at
https://rnl-data.ae.utexas.edu/texr/.

II. SENSOR PLATFORM

The TEXR dataset was captured using the University of
Texas head-mounted sensor platform. The full data collection
platform can be seen in Fig. 1.

Fig. 1: The University of Texas head-mounted sensor plat-
form for XR headset tracking research. The head-mounted
sensor platform features two L1/L2/L5 GNSS antennas, two
wideband GNSS RF front ends, smartphone- and industrial-
grade MEMS IMUs, and stereoscopic cameras. The support
hardware consisting of batteries, computers, and a GPS timing
receiver is mounted to a backpack.

The sensor platform is equipped with the following sensors
shown in Fig. 2:

• 2× Antcom G8Ant-3A4TNB1 1 high performance GNSS
patch antennas (NGS code: ACCG8ANT 3A4TB1).
Triple frequency L1/L2/L5; 40 dB low-noise amplifier

• 2× Tallysman TW1721 L1 GNSS antennas.
• 1× RadioLynx GNSS RF front end [14]–[16]. Supports

two GNSS antennas; dual-frequency L1/L2; 9.6Msps IF
sampling rate on both channels; developed in-house.

• 1× RadioLion GNSS RF front end, available from Locus
Lock [17], [18]. Supports two GNSS antennas; triple
frequency L1/L2/L5; 10Msps IF sampling rate on the
L1 and L2 channels, 20Msps IF sampling rate on the L5
channel; developed in-house.

• 1× u-blox EVK-M8T. Mass-market timing receiver.
• 2× Bosch BMI088 IMU. Low-cost MEMS device;

smartphone-grade IMU noise characteristics; 100Hz out-

2



Fig. 2: The University of Texas head-mounted sensor platform contains many sensors mounted to a helmet to capture the user’s
motion. The exact measurements of each of the sensors’ relative locations and rotations are available in the dataset.

put rate; ±6 g specific force range; ±250 ◦ s−1 angular
velocity range.

• 1× LORD MicroStrain 3DM-GX5-25 IMU. High-
performance MEMS device; industrial-grade IMU noise
characteristics; 100Hz output rate.

• 2× ModalAI MSU-M0015 stereo cameras. 640 × 480
resolution; monochromatic; OmniVision OV7251 CMOS
sensor; global shutter; software-synchronized at 30 fps;

The truth trajectory is the solution computed using the
PpEngine sensor fusion engine [16]. The post-processed solu-
tion is fused carrier phase differential GNSS (CDGNSS) with
inertial sensing using the Lord MicroStrain IMU and triple
frequency GNSS measurements from the GRID software-
defined receiver, whose application name is PpRx [14], [16],
[18], [19].

The head-mounted sensor platform backpack houses a
Lenovo Yoga, and Odroid XU4 computers. The Lenovo Yoga
logs data from the RadioLion, Bosch BMI088, and LORD
MicroStrain IMU as shown in the Fig. 5. The ModalAI VOXL,
housed on the headset, logs data from the stereo cameras.
The Odroid XU4 logs data from the RadioLynx and provides
timestamps for the images recorded by the ModalAI VOXL
as shown in Fig. 5.

Most data logging processes are developed in-house for
precise synchronization between sensor data. Details on sensor
synchronization are provided in Sec. IV.

To enable CDGNSS-based positioning, the TEXR dataset
also includes GNSS data logged from a nearby reference
antenna with a clear view of the sky. The reference antenna is a
geodetic-grade Trimble Zephyr II (NGS code: TRM57971.00).
For consistency with the headset, reference data are logged
with an identical RadioLynx RF front end. The sensor platform
is always within 2 km of the reference antenna, representing

short-baseline CDGNSS conditions.
The Cartesian coordinates (in meters) of the reference

antenna’s L1 phase center in the ITRF Earth-Centered Earth-
Fixed (ECEF) reference frame at the time of the data capture
are

rECEF = [−742080.0705,−5462030.6811, 3198339.7301]T

III. DATA COLLECTION

The TEXR dataset captures a mix of open-sky and light-
urban environments to represent a mix of outdoor XR use
cases. XR devices will be used in two main regimes, pedes-
trian and gaming. Trajectories in the pedestrian case model
a engaging in video calls, navigation, or messaging. In the
pedestrian cases a user walking with slow head motion devi-
ating from the direction of travel models a user occasionally
looking around. The trajectories often explore new areas in
a mix of open-sky and light-urban environments. Several data
recordings exist for both the open-sky and light-urban portions
of the University of Texas campus. An example of a pedestrian
trajectory is shown in Fig. 3. The dataset contains a mix
of closed-loop trajectories such as Fig. 3 and non-closed
trajectories so that algorithms that implement loop closure can
be tested.

Data recordings for the gaming case have different user
dynamics compared to the pedestrian. In the gaming trajecto-
ries a user’s translation and rotation is faster compared to the
pedestrian trajectories. The user is moving at a quick walking
or jogging pace with rapid head motions and the user’s head is
often not facing the direction of travel. The gaming trajectories
are in open-sky conditions while the user stays in a local
region such as an open field and the user often revisits previous
locations. An example of the gaming case is shown in Fig. 4.
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Fig. 3: Example of pedestrian headset trajectories from the
dataset. These trajectory were recorded on the University of
Texas at Austin campus open-sky conditions. The user is
facing the direction of motion during the majority of the
trajectory. The top trajectory represents an open-loop case
where the user returns to a previous location. The lower image
is an example of an open-loop trajectory.

A KML file is provided along with each recording for easy
visualization.

The dataset captures a variety of open-sky and light-urban
environments in order to enable the testing of visual SLAM
algorithms in realistic scenarios. There is a complementary
trade-off between GNSS and visual sensing in open-sky
and light-urban environments. Open-sky environments such
as open fields lack visual features while also having many
GNSS satellites in view. The light-urban trajectories have
fewer GNSS satellites in view while also having a larger
number of visual features due to the surrounding buildings.

Fig. 4: Example of a gaming headset trajectory under open-
sky conditions recorded on the roof of the Speedway parking
garage. In this trajectory the user remains in the same local
area. The user moves at a higher rate in both translation and
rotation compared to the pedestrian trajectories. The user is
not always looking in the direction of travel.

The mix of trajectories provides a challenge for headset track-
ing algorithms to achieve robust performance in all outdoor
environments.

A. Data Formats

This section describes the data formats available for the
data collected by each sensor. The descriptions are organized
by sensor.

1) RadioLynx: The RadioLynx RF front end generates
single-bit-quantized samples from two antennas on the head-
set and a single antenna at the reference station, capturing
10MHz bandwidth at both L1 and L2 GPS bands. The dataset
provides tracked L1 pseudorange and carrierphase observables
generated by the GRID software-defined receiver [16]. The
RadioLynx is used to provide timestamps for the stereo
images. At the time of writing, GRID tracks GPS, Galileo,
BeiDou, and SBAS signals. The observables are provided in
the RINEX format.

2) RadioLion: The RadioLion RF front end generates dual-
bit-quantized samples from two antennas at the headset captur-
ing 10MHz bandwidth at both L1 and L2 bands and 20MHz
bandwidth around the GPS L5 frequency. The raw IF data
from the two antennas are made available in a binary format
documented along with the dataset [17], including the required
IF parameters. Raw IF data enable development of new signal
tracking strategies for precise positioning, and allow high-
sensitivity receivers to track weak signals that may not have
been tracked by the receivers in the recording platform. Raw
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Fig. 5: Block diagram of the sensors and computers on the University of Texas head-mounted sensor platform. The platform
consists of four main sensors and three computers so that the data can be recorded quickly with timestamps that can be directly
traced back to GPS time.

IF samples from the reference antenna can be used for data
bit wipeoff [14] if desired. The dataset also provides tracked
pseudorange and carrierphase observables generated by the
GRID software-defined receiver [16].

3) Stereo Cameras: The timestamped stereo images from
the ModalAI cameras are saved in the HDF5 format. The
HDF5 file contains images saved as PNG files and timestamps
given as the GPS nanosecond of the week as described in
Sec. IV. The images used for camera calibration are provided
in the same HDF5 format along with the description of the
calibration chart used to calibrate the cameras.

4) Bosch IMU: The Bosch BMI088 IMU data are recorded
at 100Hz and timestamped with the GPS time of each
measurement. The data are available in a CSV format. The
TEXR dataset provides the extrinsic IMU parameters, lever
arm and rotation in the head-mounted sensor platform’s body
frame. A description of the synchronization and calibration is
found in Sec. IV. The IMUs are built-in to the RadioLynx and
RadioLion boards, and have been set up such that the IMU
data timestamps can be traced back to the GNSS RF sampling
clock. This enables highly accurate correspondence between
the IMU timestamps and GPS time.

5) Lord Microstrain IMU: Timestamped specific force and
angular rate measurements from the high-performance LORD
MicroStrain MEMS IMU are made available in CSV format.
The LORD IMU accepts a PPS (pulse per second) signal
generated by the u-blox receiver to synchronize to GPS time.
LORD IMU measurements are internally compensated for
temperature variation.

6) Ground Truth Trajectory: The ground truth trajectory is
provided in a CSV format and as a KML file. The ground
truth trajectory is found using the GNSS observables from
the RadioLion and the LORD Microstrain IMU. The truth

trajectory contains a pose solution found by performing a
fused GNSS-INS position and orientation estimation using the
PpEngine sensor fusion engine [16].

IV. SENSOR CALIBRATION AND SYNCHRONIZATION

Accurate sensor calibration and synchronization is imper-
ative for any localization dataset. The performance of the
headset tracking is highly dependent on the precision of the
calibration of the sensors. This section describes the extrinsic
and intrinsic calibration performed for each of the sensors. The
relative positions and orientations of the sensors are shown in
Fig. 6. The dataset contains all the files used to calibrate the
sensors so that the calibration can be repeated.

A. IMU calibration

The lever arm between the the phase center of the primary
GNSS antenna and the IMUs is provided with the orientation
of each of the IMUs and is shown in Fig. 6. The dataset pro-
vides a long calibration trajectory under open-sky conditions
with reference observables for refinement of the extrinsic IMU
parameters. A 24 h long stationary recording for the Bosch
and Lord IMUs is also provided in the dataset to enable the
calibration of the noise and bias stability. The accelerometer
and gyroscope biases and scale factors can also be estimated
from these data, however these values should be treated as an
initialization for an online calibration as they will change due
to the turn-on bias of the IMUs.

B. Camera Calibration

The lever arm between the the phase center of the primary
GNSS antenna and the cameras is shown in Fig. 6 and is
provided with the orientation of each of the cameras. A series
of images of a calibration chart and the calibration chart
parameters are provided in the dataset so that calibration can
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be performed. The intrinsic parameters found using the Kalibr
calibration toolbox [20] are provided in the dataset.

C. Camera Synchronization

The ModialAI stereo cameras are triggered according to the
VOXL’s internal clock at a rate of 30 fps. Each of the globally
shuttered image sensors are triggered simultaneously. At the
start of each exposure the current GPS timestamp is recorded
as nanoseconds of the week. The timestamp is pulled from
the Odroid XU4 running the GRID software defined receiver
as shown in Fig. 5. The mean latency between the recorded
timestamp of the exposure time and the true exposure time
was found to be less than 1.5ms. The latency was found by
recording an LED powered by the PPS output of the u-blox
EVK-M8T timing receiver. The LED illuminated precisely at
the start of the GPS second. The time stamp of the image with
the first illumination of the LED differenced from the known
time to find the error in the timestamp. It was found that the
error in the timestamp was less than the exposure time of the
camera.

V. SUMMARY AND FUTURE EXTENSIONS

The TEXR dataset provides a benchmark for testing and
evaluating headset tracking algorithms in real outdoor environ-
ments. The authors hope this comprehensive dataset of GNSS
observables and raw IF data, IMU measurements, and stereo
camera images benefits futures researchers. The TEXR dataset
enables the evaluation of computer vision and sensor fusion
algorithms on real world data and become a benchmarking
service for XR similar to the KITTI dataset [7] for computer
vision on vehicles. The authors plan to expand the dataset in
the future to include trajectories in deep-urban environments,
and trajectories with minimal GNSS availability. The TEXR
dataset will also be expanded to include a 5G/6G cellular FR3
receiver to enable research into improving wireless connectiv-
ity for XR devices.
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Fig. 6: Top: top-down view of the sensing platform. Bottom: front view. The drawings indicate the relative positions and
orientations of all the sensors on the head-mounted platform. All the measurements are in millimeters. The relative rotation
of each of the three IMUs is shown in the top panel by denoting the xyz coordinate system of each IMU. The symbol ⊙
denotes vectors coming out of the page while the symbol ⊗ denotes a vector going into the page. All coordinate systems are
right-handed and orthogonal.
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